Structural and Enumerative Properties
نویسنده
چکیده
OF DISSERTATION
منابع مشابه
Many 2-Level Polytopes from Matroids
The family of 2-level matroids, that is, matroids whose base polytope is 2-level, has been recently studied and characterized by means of combinatorial properties. 2-level matroids generalize series-parallel graphs, which have been already successfully analyzed from the enumerative perspective. We bring to light some structural properties of 2-level matroids and exploit them for enumerative pur...
متن کاملA Survey of Simple Permutations
We survey the known results about simple permutations. In particular, we present a number of recent enumerative and structural results pertaining to simple permutations, and show how simple permutations play an important role in the study of permutation classes. We demonstrate how classes containing only finitely many simple permutations satisfy a number of special properties relating to enumer...
متن کاملPATTERNS IN PERMUTATIONS AND INVOLUTIONS, A STRUCTURAL AND ENUMERATIVE APPROACH By CHEYNE HOMBERGER A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy PATTERNS IN PERMUTATIONS AND INVOLUTIONS, A STRUCTURAL AND ENUMERATIVE APPROACH By Cheyne Homberger May 2014 Chair: Miklós Bóna Major: Mathematics This dissertation presents a multifaceted look into the structural decomposition of permut...
متن کاملEnumerative properties of generalized associahedra
Some enumerative aspects of the fans called generalized associahedra, introduced by S. Fomin and A. Zelevinsky in their theory of cluster algebras, are considered in relation with a bicomplex and its two spectral sequences. A precise enumerative relation with the lattices of generalized noncrossing partitions is conjectured and some evidence is given.
متن کاملConvex Neural Codes in Dimension 1
Neural codes are collections of binary strings motivated by patterns of neural activity. In this paper, we study algorithmic and enumerative aspects of convex neural codes in dimension 1 (i.e. on a line or a circle). We use the theory of consecutive-ones matrices to obtain some structural and algorithmic results; we use generating functions to obtain enumerative results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008